

Genetics, Variety Development, and Species Selection

Forage Productivity is the function of: Genetics + Management + Environment

Good genetics = good performance

- Correct forage species for the operation
- Best variety of those species for maximum performance
- Best management practices for the best outcomes
 - Provided, weather cooperates as well

Genetics vs. Variety and Species Selection

- About 10,000 grass species worldwide
- About 12,000 legume species worldwide
 - only ~40 used for hay, silage, and pastures
- A "Forage Manager" must be familiar with these grasses, legumes, and few other miscellaneous forages

Species and Variety Selection

Importance

	\$120-160/acre or more
Lost production	\$70 or more
Herbicide	\$0-20
Drilling	\$10-15
Tillage	\$20 or more
Seed	\$20-40/acre
Cost of Seeding:	

If there is a partial success (or failure), *an inadequate stand not reseeded* will result in lost production over the life of the stand *i.e.*, 1/2 ton/year for 4 years is \$140/acre or more.

Species and Variety Selection

Species/variety selection based on:

- Adaptation related to persistence
 - soil
 - climate
 - relevant pests
- High yield
- Intended use
- Local variety testing

Species and Variety Selection

Site and Species Selection:

A good *planning does half-of-the-job!* Should start planning at least a year ago ---

Matching species needs soil characteristics

- Soil surveys
- Soil tests
- Previous crop experience

Species and Variety Selection

Considering high-quality seed:

- Certified seed
 - guaranteed purity genetics
 - free of noxious weeds
 - fewer other weeds
- Seed treatment
 - fungicide
 - seed coating
- Legume inoculation

Alfalfa

Importance

- 1. One of the oldest domesticated crops.
- 2. Grown in all 50 states.
- 3. Highest feeding value of the forages.

Genetics

- Currently > 300 varieties
- > 30 varieties per year released
- 9 major germplasm introductions into U.S. Chile, Peru; Russia, Turkey; Flanders;

Species

Medicago sativa spp. *sativa* (purple flower alfalfa) *Medicago sativa* spp. *falcata* (yellow flower alfalfa)

Medicago sativa spp. media (purple/green/yellow or "variegated")

Alfalfa

Adaptations/Requirements

- Deep well-drained soil
- Ph 6.5 or higher
- Lots of water
- Good fertility

Variety selection

- Look at variety trial results
- Disease resistance (multiple pest resistance)
- Avoid blends
- Buy certified
- Consider use (greater yields, purchase less protein, reduce winter feed costs, reduce N fertilizer bill)

Sainfoin

General Characteristics:

- Greater frost tolerance than alfalfa
- Very winter-hardy
- Early spring growth and maturity
- More water use efficient than alfalfa
- Less regrowth than alfalfa
- Short-lived under irrigation
- Tolerant to high-lime soils
- Doesn't tolerate wet soils or high-water table

Sainfoin

Varieties:

Eski and Remont – MT Shoshone – WY (UW) Melrose and Nova - Canada Renumex – NM Delaney or UWRD– UW AES and MT AES, *the latest one!*

Importance:

- Non-bloating
- Extremely palatable
- More compatible with grasses than alfalfa
- Tolerates low P soils
- Excellent drought tolerance

Best Fit?

Dryland pastures with > 13" precipitation

IRRIGATED PERENNIAL GRASSES

Smooth brome

Adaptation

- Deep, well-drained, moist soil (same as alfalfa)
- Alaska, Canada, E. Great Plains-Northern Corn Belt
- >16 inches rainfall

Meadow brome

Adaptation

- Much more limited
- Intermountain West

Northern type of smooth brome best adapted to Canada, the Dakotas; Nebraska and Wyoming are transition zones, Kansas, Colorado use the southern type. Brome does just fine at Fairbanks, Alaska (60 degree N. latitude).

IRRIGATED PERENNIAL GRASSES

Adaptation:

Timothy

- Not as widely adapted as smooth brome
- Cool, moist areas
- Tolerant of acidity
- Tolerant of wetness, some flooding
- Low tolerance of drought or salinity

Uses:

- First growth hay
- Regrowth pasture
- Standard for horses
- Easily over-grazed

Note: Avoid sandy soils!

IRRIGATED PERENNIAL GRASSES

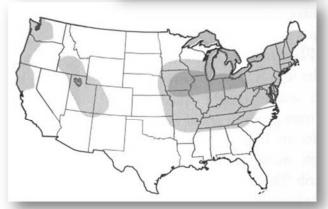

Creeping Foxtail

Adaptation:

- Mostly Intermountain West
- Annual precipitation strictly irrigated
- Winter hardiness: excellent
- Salinity tolerance: good
- Wet soil/flooding tolerance: excellent
- Drought tolerance: none
- Heat tolerance: little

Use:

- Hay + Pasture: early greenup in spring; excellent palatability; good grazing tolerance
- Conservation use



Orchardgrass

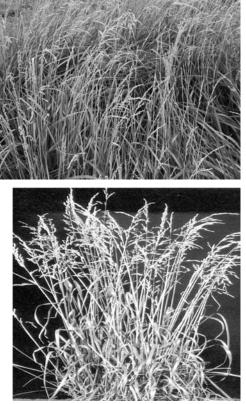
Adaptation:

- Annual precipitation needs >18 inches
- Salinity tolerance little
- Wet soil tolerance little
- Flooding tolerance none
- Drought tolerance limited
- Heat tolerance good
- Shade tolerance good

Orchardgrass

Uses:

- Pasture preferred over hay
- Season average earliness
- Growth habit lots of basal leaves
- Regrowth excellent
- Palatability excellent because of very soft leaves
- Grazing tolerance dependent on management


Tall fescue

(*Festuca arundinacea* Schreb.) – old name Lolium arundinaceum (Schreb.) Darbysh Schedonorus arundinaceus (Schreb.) Dumort. Family: Poaceae Origin: Europe, Africa

Description/Characteristics:

- Cool-season perennial
- Bunch grass (mainly); sod forming too
- Seed head a panicle

Bunch type, excellent seed production potential

Tall fescue

Adaptation:

- Adapted to humid, temperate areas
- Annual precipitation >16 in.
- Winter hardiness good
- Salinity tolerance good
- Wet soil/flooding tolerance good
- Drought tolerance good
- Heat tolerance good

Reed canarygrass

- Cool-season perennial
- Long-lived
- Sod-forming

Adaptation:

- Annual precipitation >16 in.
- Winter hardiness excellent
- Salinity tolerance little
- Wet soil/flooding tolerance excellent
- Drought tolerance good
- Heat tolerance poor

Reed Canarygrass

Uses and Management:

• Pasture preferred over hay

-Forage quality decline

-Palatability - good until near heading

-Grazing tolerance - good

- Conservation use -waterways, ditch banks, not irrigation ditches
- Difficult to establish because of slow emergence; once established vigorous and invasive in wet sites

Intermediate wheatgrass

Adaptation:

- Annual precipitation >14 in.
- Salinity tolerance moderate
- Wet soil/flooding tolerance little
- Drought tolerance good
- Heat tolerance little

Intermediate wheatgrass

Use and management:

- Establishment –relatively easy to establish, high seedling vigor
- Compatibility with legumes compatible with alfalfa, particularly under dryland
- Palatability fair to good
- Regrowth limited
- Growth habit upright, suitable for haying
- Hay vs pasture useful for pasture or haying

Hybrid wheatgrass

Bluebunch wheatgrass x quackgrass

Agropyrum (Pseudoroegneria) spicatum x Agropyrum (Elytrigia) repens

Cultivar: 'Newhy'

- good salt tolerance

IRRIGATED PERENNIAL GRASSES

Species Selection for Specific Situations:

1. Wet, poorly drained, low salinity

Smooth bromegrass Meadow bromegrass Timothy Creeping foxtail Orchardgrass Tall fescue Reed canarygrass Intermediate wheatgrass Hybrid wheatgrass

Recommendation:

- timothy, creeping foxtail, tall fescue, and reed canarygrass

IRRIGATED PERENNIAL GRASSES

Species Selection for Specific Situations:

2. Well-drained, high salts

Smooth bromegrass Meadow bromegrass Timothy Creeping foxtail Orchardgrass Tall fescue Reed canarygrass Intermediate wheatgrass Hybrid wheatgrass

Recommendation:

- tall fescue, hybrid wheatgrass (best)

IRRIGATED PERENNIAL GRASSES

Species Selection for Specific Situations:

3. Mixture with alfalfa for pasture

Smooth bromegrass Meadow bromegrass Timothy Creeping foxtail Orchardgrass Tall fescue Reed canarygrass Intermediate wheatgrass Hybrid wheatgrass

Recommendation:

- smooth brome, meadow brome, orchardgrass, tall fescue, intermediate wheatgrass, (possibly hybrid wheatgrass)

Grass-Legume Mix to Reduce Nitrogen Fertilization

Objective:

- Identify an optimal grass-legume balance in mixture that sustains high yield stability over time
- Quantify legume nitrogen contribution to grass growth, and its variation across environments

Methods/approach:

- One grass (MaxQ tall fescue)
- One legume (alfalfa, Ameristand 403T)
- 10 treatments, replicated 3 times

- 5 grass-legume mix: 1:0; 0.75:0.25; 0.50:0.50; 0.25:0.75; 0:1 5 N rates: 45; 90; 135; 180; and 270 lb/acre
- Planting date: Sep 10, 2009; seeding rate: 22 lb PLS/acre
- Harvests: <u>2010-2012</u>, early June, late July, early October; 2013, early June, late July, early October

Grass-Legume Mix to Reduce Nitrogen Fertilization

Results:

Dry matter yield (lb/A) of tall fescue-alfalfa mix at Lingle, 2010

Trt	TF-Alf	1st cut	2nd cut	3rd cut	Total	Increase/control (%)
1	TF-alf (1:0)	866	2675	890	4431	0
2	TF-alf (0:1)	1273	2180	1164	4618	4
3	TF-alf (0.75:0.25)	1302	2587	1726	5614	27
4	TF-alf (0.50:0.50)	1342	4529	3297	9169	107
5	TF-alf (0.25:0.75)	1197	3826	2252	7276	64
6	TF 45 lb N	1433	3149	1546	6128	38
7	TF 90 lb N	1162	2700	1677	5538	25
8	TF 135 lb N	1092	2860	1911	5864	32
9	TF 180 lb N	1096	3020	3126	7243	63
10	TF 270 lb N	1247	2502	2743	6492	46
LSD (0	.05)	560	1583	1220	1983	

Harvests: 1st - 6/7/2010; 2nd - 7/26/2010; 3rd - 10/7/2010

Sustaining Legumes in Grasslands																
Re	Results: November 18, 2010					0					- ANA					
	Forage quality	of	tall	fes	scu	e-a	lfal	fa	mix	<u>x at</u>	Lí	ngl	e, 2	, 010	uly 25,	2011
Trt	TF-Alf	ADF		NDF		IVTDM		СР		RFV						
		1st	2nd	3rd	1st	2nd	3rd	1	Cut 2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
1	TF-alf (1:0)	44	36	34	60	54	46	65	66	67	13	12	9	85	104	126
2	TF-alf (0:1)	40	33	35	47	40	44	64	70	67	20	19	17	116	149	131
3	TF-alf (0.75:0.25)	42	35	32	58	52	45	66	64	68	14	12	9	90	110	133
4	TF-alf (0.50:0.50)	43	36	33	60	56	47	67	66	67	14	13	10	87	101	126
5	TF-alf (0.25:0.75)	43	38	33	61	51	48	64	67	68	16	15	12	84	111	123
6	TF 45 lb N	41	35	32	53	52	45	65	67	70	15	13	12	104	110	132
7	TF 90 lb N	45	36	32	61	54	47	64	69	69	13	14	13	82	105	126
8	TF 135 lb N	44	36	32	61	55	48	67	67	70	14	14	16	84	103	124
9	TF 180 lb N	40	36	32	58	54	48	69	67	71	16	14	16	93	104	125
10	F 270 lb N	44	37	33	68	55	49	62	68	70	17	14	17	76	102	120
LSD (0	0.05)	5	2	2	9	6	3	8	3	3	3	3	2	23	13	11

Harvests: 1st - 6/7/2010; 2nd - 7/26/2010; 3rd - 10/7/2010

Minimum seeding rate in monoculture and mixture (lb/acre)

1. Alfalfa	8
2. Sweet clover	8
3. Birdsfoot trefoil	6
4. Alfalfa + Red clover	6+3
5. B. trefoil + Red clover	3+3
6. Red clover + Orchardgrass	5+3
7. B. trefoil + Orchardgrass	4+2
8. Alfalfa + Orchardgrass	6+3
9. Alfalfa + Bromegrass	6+8
10. Alf. + Brome + Orchard.	6+6+2

Summary

□ Investigating what strengths each variety has been bred is helpful in making better selection

 \Box Use as many resources as possible to determine the <u>best</u> <u>variety</u> for the needed uses

Seed catalogs, vendors, internet, extension publications, university website etc.

Good planning is the key for successful pasture renovation/improvement

- this needs to be planned at least a year ahead

As always, best returns depend on effective utilization and well-managed livestock and forage programs

